学术交流 网站首页> 学术交流> 正文

数学与统计学院学术预告三则

时间:2021-12-15 16:24:52 来源: 作者:郑重 阅读:

报告题目一:我心目中的线性代数课程

报告人:孙笑涛 教授

报告时间:2021年12月17日(周五) 15:00—17:00

报告地点:腾讯会议,ID: 392 419 351

报告摘要:谈谈我对线性代数课程的理解,以及如何让线性代数的概念以最自然的方式出现?

报告人简介:孙笑涛,天津大学数学学院院长,主要从事代数几何的研究,研究方向为模空间理论,包括曲线上向量丛模空间的退化等。2000年获得国家杰出青年基金资助,2012年获国家自然科学二等奖,2013年获第十四届陈省身数学奖。主要学术成绩包括:发现并证明Frobenius同态与稳定向量丛之间的重要联系;证明任意秩广义theta函数的分解定理和Seshadri-Nagaraj猜想;证明模空间极小有理曲线与Hecke曲线的等价性;与人合作证明Gieseker关于平展基本群与D-模关系的猜想,建立特征p代数曲面的Miyaoka-Yau型不等式等。


报告题目二:Wolbachia spread dynamics in stochastic environments

报告人:庾建设 教授

报告时间:2021年12月19日(周日) 14:30—16:30

报告地点:腾讯会议,ID: 105 524 310

报告摘要:Mosquito-borne diseases such as dengue fever and Zika kill more than700, 000people each year in the world.A novel strategy formosquito-borne disease control uses the bacterium Wolbachia to block virus transmission. It requires releasing Wolbachia-infected mosquitoes to exceed a threshold level. Since an accurate forecast for temperature and rainfall, the major environmental conditions regulating the mosquito dynamics, is often not available over a long time period, it is important to explore how the threshold releasing level changes in random environments.By comparing the dynamics between the stochastic system and constructed auxiliary systems, combined with other techniques, we provide sharp estimates on the threshold releasing level for Wolbachia fixation.In addition, we prove that the threshold level is,surprisingly, defined by a deterministic curve that does not fluctuate with environmentalconditions.

报告人简介:庾建设,广州大学教授,博士生导师,国家杰出基金获得者,国家有突出贡献的中青年专家,国家“百千万人才工程”第一层次、第二层次人选,教育部跨世纪优秀人才,享受政府特殊津贴专家,广州大学应用数学研究中心主任。庾建设教授长期从事微分方程动力系统、差分方程及生物数学模型的理论与应用研究,先后主持国家自然科学基金项目10余项,其中重点项目3项,数学交叉研究平台项目2项;曾获国家级教学成果一等奖1项,省部级科技成果、教学成果一等奖3项;2020年获得广东省科学技术奖自然科学奖一等奖。近十年来,致力于应用数学的理论研究及其在基因表达、蚊媒传染疾病防控等方面的应用,已在《Nature》、《PLoSComput. Biol.》、《J. Differential Equations》、《SIAM J.Appl.Math.》、《J.Math.Biol.》、《J.Theor.Biol.》等重要数学、应用数学国际刊物发表论文多篇。


报告题目三:Mosquito suppression models consisting of two sub-equations switching each other

报告人:郑波 教授

报告时间:2021年12月19日(周日) 16:30—18:30

报告地点:腾讯会议,ID: 105 524 310

报告摘要:The release of Wolbachia-infected mosquitoes in 2016 and 2017 enabled near-eliminationof the sole dengue vector Aedes albopictus on Shazai and Dadaosha islands in Guangzhou. Mathematical analysis may offer guidance in designing effective mass release strategies for the area-wide application of this Wolbachia incompatible and sterile insect technique in the future. The two most crucial questions in designing release strategies are how often and in what amount should Wolbachia-infected mosquitoes be released in order to guarantee the success of population suppression. In this talk, I will introduce our recent works on answering the two questions which have been published in the following three papers.

·J. Differ. Equations, 2020, 269(7): 6193-6215.

·J.Differ. Equations, 2020, 269(12): 10395-10415.

·SIAM J. Appl. Math., 2021, 81(2): 718-740.

By treating the released mosquitoes as a given function, we proposed mosquito suppression models consisting of two sub-equations switching each other. An almost complete characterization of interactive dynamics of wild and released mosquitoes are offered,including the global asymptotic stability of zero solution and the exact number of periodic solutions of these models. It is well known that to obtain existence and also uniqueness conditions for periodic solutions is mathematically challenging for many dynamical systems and there are few such results existed. I hope the methods and techniques used in these three papers can be usefully applied to other model analysis as well.

报告人简介:郑波,博士,广州大学教授,博士生导师。主要从事常微分方程、泛函微分方程及生物数学模型的理论与应用研究,在《Nature》、《SIAM Journal of Applied Mathematics》、《Journal of Mathematical Biology》、《中国科学》、《Journal of Theoretical Biology》、《Theoretical Population Biology》等国际国内重要刊物上发表论文20余篇。先后主持国家自然科学基金4项、广州市教育局3项,2014年入选广东省高校优秀青年教师培育对象,是教育部创新团队“泛函微分方程及相关问题”的骨干成员。获得首届秦元勋青年数学奖。

欢迎广大师生参加!

最新导读